Using natural variation to understand plant responses to iron availability

J Exp Bot. 2021 Mar 17;72(6):2154-2164. doi: 10.1093/jxb/erab012.

Abstract

Iron bioavailability varies dramatically between soil types across the globe. This has given rise to high levels of natural variation in plant iron responses, allowing members of even a single species to thrive across a wide range of soil types. In recent years we have seen the use of genome-wide association analysis to identify natural variants underlying plant responses to changes in iron availability in both Arabidopsis and important crop species. These studies have provided insights into which genes have been important in shaping local adaptation to iron availability in different plant species and have allowed the discovery of novel regulators and mechanisms, not previously identified using mutagenesis approaches. Furthermore, these studies have allowed the identification of markers that can be used to accelerate breeding of future elite varieties with increased resilience to iron stress and improved nutritional quality. The studies highlighted here show that, in addition to studying plant responses to iron alone, it is important to consider these responses within the context of plant nutrition more broadly and to also consider iron regulation in relation to additional traits of agronomic importance such as yield and disease resistance.

Keywords: Genetic markers; iron deficiency; iron toxicity; natural variation; quantitative genetics; transcriptome.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis* / genetics
  • Genome-Wide Association Study*
  • Iron
  • Phenotype
  • Plant Breeding

Substances

  • Iron