Adaptive stochastic resonance in bistable system driven by noisy NLFM signal: phenomenon and application

Philos Trans A Math Phys Eng Sci. 2021 Mar 8;379(2192):20200239. doi: 10.1098/rsta.2020.0239. Epub 2021 Jan 18.

Abstract

The stochastic resonance (SR) in a bistable system driven by nonlinear frequency modulation (NLFM) signal and strong noise is studied. Combined with empirical mode decomposition (EMD) and piecewise idea, an adaptive piecewise re-scaled SR method based on the optimal intrinsic mode function (IMF), is proposed to enhance the weak NLFM signal. At first, considering the advantages of EMD for dealing with non-stationary signals, the segmented NLFM signal is processed by EMD. Meanwhile, the cross-correlation coefficient is used as the measure to select the optimal IMF that contains the NLFM signal feature. Then, the spectral amplification gain indicator is proposed to realize the adaptive SR of the optimal IMF of each sub-segment signal and reconstruct the enhanced NLFM signal. Finally, the effectiveness of the proposed method is highlighted with the analysis of the short-time Fourier transform spectrum of the simulation results. As an application example, the proposed method is verified adaptability in bearing fault diagnosis under the speed-varying condition that represents a typical and complicated NLFM signal in mechanical engineering. The research provides a new way for the enhancement of weak non-stationary signals. This article is part of the theme issue 'Vibrational and stochastic resonance in driven nonlinear systems (part 1)'.

Keywords: adaptive stochastic resonance; fault diagnosis; nonlinear frequency modulation signal; signal enhancement; strong noise.