Enhancing and Mitigating Radiolytic Damage to Soft Matter in Aqueous Phase Liquid-Cell Transmission Electron Microscopy in the Presence of Gold Nanoparticle Sensitizers or Isopropanol Scavengers

Nano Lett. 2021 Jan 27;21(2):1141-1149. doi: 10.1021/acs.nanolett.0c04636. Epub 2021 Jan 15.

Abstract

In this work, we describe the radiolytic environment experienced by a polymer in water during liquid-cell transmission electron microscopy (LCTEM). We examined the radiolytic environment of aqueous solutions of poly(ethylene glycol) (PEG, 2400 g/mol) in the presence of sensitizing gold nanoparticles (GNPs, 100 nm) or radical scavenging isopropanol (IPA). To quantify polymer damage, we employed post-mortem analysis via matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS). This approach confirms IPA (1-10% w/v) can significantly mitigate radiolysis-induced damage to polymers in water, while GNPs significantly enhance damage. We couple LCTEM experiments with simulations to provide a generalizable strategy for assessing radiolysis mitigation or enhancement. This study highlights the caution required for LCTEM experiments on inorganic nanoparticles where solution phase properties of surrounding organic materials or the solvent itself are under investigation. Furthermore, we anticipate an increased use of scavengers for LCTEM studies of all kinds.

Keywords: Gold Nanoparticles; Liquid-Phase TEM; Polymers; Radical Scavengers; TEM.

Publication types

  • Research Support, Non-U.S. Gov't