Estimation and correction of instrument artefacts in dynamic impedance spectra

Sci Rep. 2021 Jan 14;11(1):1362. doi: 10.1038/s41598-020-80468-x.

Abstract

Dynamic impedance spectroscopy is one of the most powerful techniques in the qualitative and quantitative mechanistic studies of electrochemical systems, as it allows for time-resolved investigation and dissection of various physicochemical processes occurring at different time scales. However, due to high-frequency artefacts connected to the non-ideal behaviour of the instrumental setup, dynamic impedance spectra can lead to wrong interpretation and/or extraction of wrong kinetic parameters. These artefacts arise from the non-ideal behaviour of the voltage and current amplifier (I/E converters) and stray capacitance. In this paper, a method for the estimation and correction of high-frequency artefacts arising from non-ideal behaviour of instrumental setup will be discussed. Using resistors, [Formula: see text] redox couple and nickel hexacyanoferrate nanoparticles, the effect of high-frequency artefacts will be investigated and the extraction of the impedance of the system from the measured dynamic impedance is proposed. It is shown that the correction allows acquiring proper dynamic impedance spectra at frequencies higher than the bandwidth of the potentiostat, and simultaneously acquire high precision cyclic voltammetry.