Two-Dimensional Metallic Vanadium Ditelluride as a High-Performance Electrode Material

ACS Nano. 2021 Jan 26;15(1):1858-1868. doi: 10.1021/acsnano.0c10250. Epub 2021 Jan 14.

Abstract

Two-dimensional (2D) metallic transition-metal dichalcogenides (MTMDCs) are considered as ideal electrode materials for enhancing the device performances of 2D semiconducting transition-metal dichalcogenides, due to their similar atomic structures and complementary electronic properties. Vanadium ditelluride (VTe2) behaves as a fascinating material in MTMDCs family, presenting room-temperature ferromagnetism, charge density waves order, and topological property. However, its practical applications in universal electrode/energy-related fields remain unexplored. Herein, we achieved the direct synthesis of ultrathin, large-domain, and thickness-tunable 1T-VTe2 nanosheets on an easily available mica substrate by chemical vapor deposition (CVD). We further uncover that the CVD-derived 1T-VTe2 can serve as a high-performance electrode material thanks to its ultrahigh conductivity. Accordingly, a 6 times higher field-effect mobility (∼47.5 cm2 V-1 s-1) was achieved in 1T-VTe2-contacted monolayer MoS2 devices than that using a conventional Ti/Au electrode (∼8.1 cm2 V-1 s-1). Moreover, the CVD-synthesized 1T-VTe2 nanosheets are revealed to present excellent electrocatalytic activity for hydrogen evolution reaction. These results should propel the direct application of CVD-grown 2D MTMDCs as high-performance electrode materials in all 2D materials related devices.

Keywords: chemical vapor deposition; electrode material; field-effect transistor; hydrogen evolution reaction; vanadium telluride.