CuS/rGO-PEG Nanocomposites for Photothermal Bonding of PMMA-Based Plastic Lab-on-a-Chip

Nanomaterials (Basel). 2021 Jan 12;11(1):176. doi: 10.3390/nano11010176.

Abstract

We developed copper sulfide (CuS)/reduced graphene oxide (rGO)-poly (ethylene glycol) (PEG) nanocomposites for photothermal bonding of a polymethyl methacrylate (PMMA)-based plastic lab-on-a-chip. The noncontact photothermal bonding of PMMA-based plastic labs-on-chip plays an important role in improving the stability and adhesion at a high-temperature as well as minimizing the solution leakage from microchannels when connecting two microfluidic devices. The CuS/rGO-PEG nanocomposites were used to bond a PMMA-based plastic lab-on-a-chip in a short time with a high photothermal effect by a near-infrared (NIR) laser irradiation. After the thermal bonding process, a gap was not generated in the PMMA-based plastic lab-on-a-chip due to the low viscosity and density of the CuS/rGO-PEG nanocomposites. We also evaluated the physical and mechanical properties after the thermal bonding process, showing that there was no solution leakage in PMMA-based plastic lab-on-a-chip during polymerase chain reaction (PCR) thermal cycles. Therefore, the CuS/rGO-PEG nanocomposite could be a potentially useful nanomaterial for non-contact photothermal bonding between the interfaces of plastic module lab-on-a-chip.

Keywords: CuS/rGO-PEG nanocomposite; PMMA-based plastic lab-on-a-chip; photothermal bonding.