Crystal and Electronic Structures of MoSi2-Type CrGe2 Synthesized under High Pressure

Inorg Chem. 2021 Feb 1;60(3):1767-1772. doi: 10.1021/acs.inorgchem.0c03240. Epub 2021 Jan 14.

Abstract

Chromium germanides, namely, Nowotny chimney-ladder-phase CrGe1.77 and MoSi2-type CrGe2, were synthesized above 15 GPa or more via laser heating using a diamond anvil cell (LHDAC). MoSi2-type CrGe2, which is the most Ge-rich compound in the Cr-Ge system, crystallizes in the tetragonal structure with a space group of I4/mmm (no. 139) and lattice parameters of a = 3.24919(6) Å and c = 8.0523(3) Å and is isostructural with MoSi2. MoSi2-type CrGe2 has a deep pseudogap caused by the splitting of 3d orbitals with Cr, as evidenced by ab initio calculation. In this article, we have succeeded in synthesizing a binary compound between transition-metal and metalloid elements for the first time at high pressures above 10 GPa using the LHDAC. This pathway opens the possibility to explore more compounds in this system and may provide new insights into the fundamental interaction between these two elements.