Enhancing electrocatalytic water splitting by surface defect engineering in two-dimensional electrocatalysts

Nanoscale. 2021 Jan 28;13(3):1581-1595. doi: 10.1039/d0nr08009h.

Abstract

Overall electrocatalytic water splitting can efficiently and sustainably produce clean hydrogen energy to alleviate the global energy crisis and environmental pollution. Two-dimensional (2D) materials with a unique band structure and surface conformation have emerged as promising electrocatalysts for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER). However, the intrinsic activities of primitive 2D materials in the catalytic process are still inferior to those of noble metal-based electrocatalysts. Surface defect engineering can modulate the electronic structure of 2D materials and induce new physicochemical properties, promoting their electrocatalytic performance. Herein, this minireview focuses on some recent developments in surface defect engineering, including the contribution of active sites, the derivation of the heterogeneous interface, and the anchoring of active substances, which provides an effective way to further optimize 2D electrocatalysts for water splitting. Furthermore, the typical morphological characteristics, catalytic activity, stability and catalytic mechanism of these 2D electrocatalysts are introduced. We believe that this minireview will help design more efficient and economical electrocatalysts for overall water splitting.