Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation

Cell Prolif. 2021 Mar;54(3):e12988. doi: 10.1111/cpr.12988. Epub 2021 Jan 13.

Abstract

Objectives: Circadian rhythm controls complicated physiological activities in organisms. Circadian clock genes have been related to tumour progression, but its role in glioma is unknown. Therefore, we explored the relationship between dysregulated circadian clock genes and glioma progression.

Materials and methods: Samples were divided into different groups based on circadian clock gene expression in training dataset (n = 672) and we verified the results in other four validating datasets (n = 1570). The GO and GSEA enrichment analysis were conducted to explore potential mechanism of how circadian clock genes affected glioma progression. The single-cell RNA-Seq analysis was conducted to verified previous results. The immune landscape was evaluated by the ssGSEA and CIBERSORT algorithm. Cell proliferation and viability were confirmed by the CCK8 assay, colony-forming assay and flow cytometry.

Results: The cluster and risk model based on circadian clock gene expression can predict survival outcome. Samples were scoring by the least absolute shrinkage and selection operator regression analysis, and high scoring tumour was associated with worse survival outcome. Samples in high-risk group manifested higher activation of immune pathway and cell cycle. Tumour immune landscape suggested high-risk tumour infiltrated more immunocytes and more sensitivity to immunotherapy. Interfering TIMELESS expression affected circadian clock gene expression, inhibited tumour cell proliferation and arrested cell cycle at the G0/G1 phase.

Conclusions: Dysregulated circadian clock gene expression can affect glioma progression by affecting tumour immune landscape and cell cycle. The risk model can predict glioma survival outcome, and this model can also be applied to pan-cancer.

Keywords: cell cycle; circadian clock genes; glioma; immune infiltration; nomogram.

MeSH terms

  • Cell Cycle / physiology
  • Cell Proliferation / physiology*
  • Circadian Clocks / genetics*
  • Circadian Rhythm / physiology*
  • Disease Progression
  • Glioma / mortality
  • Glioma / pathology*
  • Humans