AlzGPS: a genome-wide positioning systems platform to catalyze multi-omics for Alzheimer's drug discovery

Alzheimers Res Ther. 2021 Jan 13;13(1):24. doi: 10.1186/s13195-020-00760-w.

Abstract

Background: Recent DNA/RNA sequencing and other multi-omics technologies have advanced the understanding of the biology and pathophysiology of AD, yet there is still a lack of disease-modifying treatments for AD. A new approach to integration of the genome, transcriptome, proteome, and human interactome in the drug discovery and development process is essential for this endeavor.

Methods: In this study, we developed AlzGPS (Genome-wide Positioning Systems platform for Alzheimer's Drug Discovery, https://alzgps.lerner.ccf.org ), a comprehensive systems biology tool to enable searching, visualizing, and analyzing multi-omics, various types of heterogeneous biological networks, and clinical databases for target identification and development of effective prevention and treatment for AD.

Results: Via AlzGPS: (1) we curated more than 100 AD multi-omics data sets capturing DNA, RNA, protein, and small molecule profiles underlying AD pathogenesis (e.g., early vs. late stage and tau or amyloid endophenotype); (2) we constructed endophenotype disease modules by incorporating multi-omics findings and human protein-protein interactome networks; (3) we provided possible treatment information from ~ 3000 FDA approved/investigational drugs for AD using state-of-the-art network proximity analyses; (4) we curated nearly 300 literature references for high-confidence drug candidates; (5) we included information from over 1000 AD clinical trials noting drug's mechanisms-of-action and primary drug targets, and linking them to our integrated multi-omics view for targets and network analysis results for the drugs; (6) we implemented a highly interactive web interface for database browsing and network visualization.

Conclusions: Network visualization enabled by AlzGPS includes brain-specific neighborhood networks for genes-of-interest, endophenotype disease module networks for omics-of-interest, and mechanism-of-action networks for drugs targeting disease modules. By virtue of combining systems pharmacology and network-based integrative analysis of multi-omics data, AlzGPS offers actionable systems biology tools for accelerating therapeutic development in AD.

Keywords: Alzheimer’s disease; Clinical trial; Drug repurposing; Genomics; Mechanism-of-action; Multi-omics; Network medicine; Systems pharmacology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alzheimer Disease* / drug therapy
  • Alzheimer Disease* / genetics
  • Drug Discovery*
  • Humans
  • Proteome
  • Systems Biology
  • Transcriptome

Substances

  • Proteome