Adsorption Evaluation for the Removal of Nickel, Mercury, and Barium Ions from Single-Component and Mixtures of Aqueous Solutions by Using an Optimized Biobased Chitosan Derivative

Polymers (Basel). 2021 Jan 11;13(2):232. doi: 10.3390/polym13020232.

Abstract

In this experimental study, the use of 5-hydroxymethyl-furfural (HMF) organic compound as a grafting agent to chitosan natural polymer (CS) was examined. One optimized chitosan derivative was synthesized, and then tested (CS-HMF), in order to uptake nickel, mercury, and barium metal ions from single- and triple-component (multi-component) aqueous solutions. The characterization of the material before and after the metal uptake was achieved by scanning electron microscopy (SEM). The ability of the adsorption of CS-HMF was tested at pH = 6. The adjusting of temperature from 25 to 65 °C caused the increase in the adsorption capacity. The equilibrium data were fitted to the models of Langmuir and Freundlich, while the data from kinetic experiments were fitted to pseudo-1st and pseudo-2nd order models. The best fitting was achieved for the Langmuir model (higher R2). The adsorption capacity for nickel, mercury, and barium removal at 25 °C (single component) was 147, 107, and 64 (mg/g), respectively. However, the total adsorption capacity for the multi-component was 204 mg/g. A thermodynamic study was also done, and the values of ΔG0, ΔH0, and ΔS0 were evaluated.

Keywords: 5-hydroxymethyl-furfural; adsorption; barium; biomaterials; chitosan; derivative; mercury; nickel; wastewaters.