Substrate Stiffness Modulates the Maturation of Human Pluripotent Stem-Cell-Derived Hepatocytes

ACS Biomater Sci Eng. 2016 Sep 12;2(9):1649-1657. doi: 10.1021/acsbiomaterials.6b00475. Epub 2016 Sep 1.

Abstract

Obtaining functional hepatocytes from human pluripotent stem cells (hPSCs) holds great potential for applications in drug safety testing, as well in the field of regenerative medicine. However, developing functionally mature hPSC-derived hepatocytes (hPSC-Heps) remains a challenge. We hypothesized that the cellular microenvironment plays a vital role in the maturation of immature hepatocytes. In this study, we examined the role of mechanical stiffness, a key component of the cellular microenvironment, in the maturation of hPSC-Heps. We cultured hPSC-Heps on collagen-coated polyacrylamide hydrogels with varying elastic moduli. On softer substrates the hPSC-Heps formed compact colonies while on stiffer substrates they formed a diffuse monolayer. We observed an inverse correlation between albumin production and substrate stiffness. The expression of key cytochrome enzymes, which are expressed at higher levels in the adult liver compared to the fetal liver, also correlated inversely with substrate stiffness, whereas fetal markers such as Cyp3A7 and AFP showed no correlation with stiffness. Culture of hPSC-Heps on soft substrates for 12 days led to 10-30 fold increases in the expression of drug-metabolizing enzymes. These results demonstrate that substrate stiffness similar to that of the liver enables aspects of the maturation of hPSC-Heps.

Keywords: embryonic stem cell-derived hepatocytes; maturation; rigidity; stiffness.