Co-digestive performance of food waste and hydrothermal pretreated corn cob

Sci Total Environ. 2021 May 10:768:144448. doi: 10.1016/j.scitotenv.2020.144448. Epub 2021 Jan 6.

Abstract

Anaerobic co-digestion of lignocellulosic biomass and food waste (FW) has been extensively applied. However, whether hydrothermal pretreatment (HTP) of lignocellulosic biomass can enhance the performance in co-digestion deserves further investigation. In this study, corn cob (CC) was adopted as a typical lignocellulosic biomass for co-digestion with FW at different VS ratios of 1:3 (S1-S4) and 1:6 (S5-S8), attempting to evaluate the effect of HTP of CC at different temperature gradients (125, 150 and 175 °C) on the co-digestion performance. The emphasis was placed on hydrolysis, acidification and methanogenesis for different feedstock conditions. Results illustrated that the HTP had a certain destroying effect on the lignocellulose structure in CC and the crystallinity of cellulose decreased, significantly facilitating its co-digestion with FW. For FW/CC co-digestion at the VS ratio of 1:3, the S3 group (CC was pretreated at 150 °C) reached the maximum cumulative biogas yield (CBY) of 4660 mL and the maximum specific methane yield (SMY) of 316.9 mL/g·VS. Moreover, at 1:6, S7 group (pretreated at 150 °C) exhibited the optimal CBY of 4100 mL while achieving the SMY of 277.6 mL/g·VS among the digesters, indicating that the co-digestion of pretreated CC and FW could achieve higher methane production, and 150 °C refers to the optimal pretreatment temperature. Moreover, the peak values of the accumulated VFAs in digesters S1-S4 (2000-3000 mg/L) is higher than that in digesters S5-S8 (800-1500 mg/L). As suggested from microbial community and diversity date, the HTP expedited the enrichment of system hydrolyzing and acidogenic bacteria. These results are significant and provide certain guidance for optimizing the co-digestion of FW and CC in actual engineering.

Keywords: Anaerobic co-digestion; Corn cob; Food waste; Hydrothermal pretreatment; Lignocellulosic components; Methane yield.

MeSH terms

  • Anaerobiosis
  • Biofuels
  • Bioreactors
  • Food*
  • Methane
  • Refuse Disposal*
  • Zea mays

Substances

  • Biofuels
  • Methane