Long-Term Creep and Shrinkage Behavior of Concrete-Filled Steel Tube

Materials (Basel). 2021 Jan 8;14(2):295. doi: 10.3390/ma14020295.

Abstract

A concrete-filled steel tube (CFT) combines the advantages of concrete and steel in construction and structural applications. However, research on the time-dependent deformation of the CFT under long-term sustained loading are still limited, particularly for stress transfer between the steel tube and concrete due to creep. This study investigated the creep behavior of CFT over a long period of 400 days. The creep and shrinkage strain of CFT was significantly lower than those of concrete that was not confined within a steel tube. The vertical strains of the steel tube and concrete core were almost identical, and it was shown that they were well bonded and acted as a composite. The vertical stress of steel increased by 32.7%, whereas the vertical stress of concrete decreased by 15.8% at 375 days. The stress transfer is notable and cannot be neglected in CFT design. Moreover, the results of creep and shrinkage were compared to prediction values of the B4 model and B4-TW model to verify their validity.

Keywords: concrete filled steel tube; creep; long-term; model; shrinkage; strain; stress.