Direct Observation of the C + S2 Channel in CS2 Photodissociation

J Phys Chem Lett. 2021 Jan 21;12(2):844-849. doi: 10.1021/acs.jpclett.0c03386. Epub 2021 Jan 11.

Abstract

Carbon disulfide (CS2) is a typical triatomic molecule. Its photodissociation process has generally been assumed to proceed to CS and S primary products via single bond fission. However, recent theoretical calculations suggested that an exit channel to produce C + S2 should also be energetically accessible. Here, we report the direct experimental evidence for the C + S2 channel in CS2 photodissociation by using the velocity map ion imaging technique with two-photon UV and one-photon vacuum UV (VUV) excitations. The detection of the C (3P) products illustrates that the ground state and the electronically excited states of S2 coproducts are formed within highly excited vibrational states. The very weak anisotropic distributions indicate relatively slow dissociation processes. The possible dissociation mechanism involves molecular isomerization of CS2 to linear-CSS from the excited 1B2 (21Σ+) state via vibronic coupling with the 1Π state followed by an avoided crossing with the ground state surface. Our results imply that the S2 molecules observed in comets might be primarily formed in CS2 photodissociation.