Integrating segmentation information into CNN for breast cancer diagnosis of mammographic masses

Comput Methods Programs Biomed. 2021 Mar:200:105913. doi: 10.1016/j.cmpb.2020.105913. Epub 2021 Jan 7.

Abstract

Background and ObjectivesSegmentation of mammographic lesions has been proven to be a valuable source of information, as it can assist in both extracting shape-related features and providing accurate localization of the lesion. In this work, a methodology is proposed for integrating mammographic mass segmentation information into a convolutional neural network (CNN), aiming to improve the diagnosis of breast cancer in mammograms. MethodsThe proposed methodology involves modification of each convolutional layer of a CNN, so that information of not only the input image but also the corresponding segmentation map is considered. Furthermore, a new loss function is introduced, which adds an extra term to the standard cross-entropy, aiming to steer the attention of the network to the mass region, penalizing strong feature activations based on their location. The segmentation maps are acquired either from the provided ground-truth or from an automatic segmentation stage. ResultsPerformance evaluation in diagnosis is conducted on two mammographic mass datasets, namely DDSM-400 and CBIS-DDSM, with differences in quality of the corresponding ground-truth segmentation maps. The proposed method achieves diagnosis performance of 0.898 and 0.862 in terms AUC when using ground-truth segmentation maps and a maximum of 0.880 and 0.860 when a U-Net-based automatic segmentation stage is employed, for DDSM-400 and CBIS-DDSM, respectively. ConclusionsThe experimental results demonstrate that integrating segmentation information into a CNN leads to improved performance in breast cancer diagnosis of mammographic masses.

Keywords: Convolutional neural networks; Deep learning; Diagnosis; Mammography; Segmentation.

MeSH terms

  • Breast Neoplasms* / diagnostic imaging
  • Humans
  • Mammography
  • Neural Networks, Computer