Transcriptomic profiling of atrazine phytotoxicity and comparative study of atrazine uptake, movement, and metabolism in Potamogeton crispus and Myriophyllum spicatum

Environ Res. 2021 Mar:194:110724. doi: 10.1016/j.envres.2021.110724. Epub 2021 Jan 7.

Abstract

The accumulation of atrazine in sediments raises wide concern due to its potential negative effects on aquatic environments. Here we collected sediments and different submerged macrophytes to simulate natural shallow lakes and to measure atrazine levels and submerged macrophyte biomass. We determined gene expressions in submerged macrophytes treated with or without atrazine. We also examined atrazine concentrations and its metabolite structures in submerged macrophytes. When the initial concentration of atrazine in sediments ranged from 0.1 to 2.0 mg kg-1 dry weight (DW), atrazine levels in the pore water of the sediments ranged from 0.003 to 0.05 mg L-1 in 90 days. Atrazine did not show obvious long-term effects on the biomass of Potamogeton crispus and Myriophyllum spicatum (P > 0.05). On day 90, gene expressions related to cell wall in P. crispus were changed by atrazine phytotoxicity. Moreover, the decrease in the number genes controlling light-harvesting chlorophyll a/b-binding proteins verified the toxic effects of atrazine on the photosynthesis of M. spicatum. Compared with unexposed plants on day 90, ribosome pathway was significantly enriched with differentially expressed genes after submerged macrophytes were exposed to 2.0 mg kg-1 DW atrazine (P < 0.05). In addition, shoots and roots of P. crispus and M. spicatum could absorb the equal amount of atrazine (P > 0.05). Once absorbed by submerged macrophytes, atrazine was degraded into 1-hydroxyisopropylatrazine, hydroxyatrazine, deethylatrazine, didealkylatrazine, cyanuric acid, and biuret, and some of its metabolites could conjugate with organic acids, cysteinyl β-alanine, and glucose. This study establishes a foundation for aquatic ecological risk assessments and the phytoremediation of atrazine in sediments.

Keywords: Atrazine; Metabolism; Sediment; Submerged macrophytes; Transcriptomic.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Atrazine* / toxicity
  • Chlorophyll A
  • Lakes
  • Potamogetonaceae*
  • Transcriptome

Substances

  • Atrazine
  • Chlorophyll A