Process Kinetics of the Carbonation of Fly Ashes: A Research Study

Materials (Basel). 2021 Jan 6;14(2):253. doi: 10.3390/ma14020253.

Abstract

The aim of the paper is to present the results of research on the carbonation process kinetics of coal combustion ashes originating from fluidized bed boilers used in power plants. Based on the thermogravimetric analysis (TGA), the hypothesis that carbon dioxide is bounded by the mineral substances (calcium compounds) in the fly ashes was confirmed. Determining the kinetic parameters of the carbonation of fly ashes requires simultaneously taking into consideration the kinetics of the drying process of the sample. The drying process of the sample masks the effect of the reaction of CO2 with calcium compound. Unlike the ashes generated in pulverized fuel boilers, fly ashes contain irregular amorphic mineral components or poorly crystalized products of complete or partial dehydroxylation of claystone substance present in shale formations constituting the gangue as well as anhydrite (CaSO4), a desulfurization product. The content of free calcium oxide (CaO) in such ashes ranges from a few to several percent, which is a significant obstacle considering their use in cement and concrete production as type II admixtures understood to be inorganic grained materials of pozzolanic or latent hydraulic properties. The paper presents effective mechanisms which reduce the content of free CaO in ashes from Fluidized Bed Combustion (FBC) boilers to a level that allows their commercial utilization in the cement industry.

Keywords: carbonation; concrete admixtures; fly ashes; model parameter’s estimation; modeling.