Theoretical Analysis of the Built-in Metabolic Pathway Effect on the Metabolism of Erythrocyte-Bioreactors That Neutralize Ammonium

Metabolites. 2021 Jan 6;11(1):36. doi: 10.3390/metabo11010036.

Abstract

The limitations of the efficiency of ammonium-neutralizing erythrocyte-bioreactors based on glutamate dehydrogenase and alanine aminotransferase reactions were analyzed using a mathematical model. At low pyruvate concentrations in the external medium (below about 0.3 mM), the main limiting factor is the rate of pyruvate influx into the erythrocyte from the outside, and at higher concentrations, it is the disappearance of a steady state in glycolysis if the rate of ammonium processing is higher than the critical value (about 12 mM/h). This rate corresponds to different values of glutamate dehydrogenase activity at different concentrations of pyruvate in plasma. Oxidation of reduced nicotinamide adenine dinucleotide phosphate (NADPH) by glutamate dehydrogenase decreases the fraction of NADPH in the constant pool of nicotinamide adenine dinucleotide phosphates (NADP + NADPH). This, in turn, activates the pentose phosphate pathway, where NADP reduces to NADPH. Due to the increase in flux through the pentose phosphate pathway, stabilization of the ATP concentration becomes impossible; its value increases until almost the entire pool of adenylates transforms into the ATP form. As the pool of adenylates is constant, the ADP concentration decreases dramatically. This slows the pyruvate kinase reaction, leading to the disappearance of the steady state in glycolysis.

Keywords: ammonium removal; erythrocyte; erythrocyte-bioreactor; limitations of the erythrocyte-bioreactor efficiency; mathematical modeling.