Design and Compressive Behavior of Controllable Irregular Porous Scaffolds: Based on Voronoi-Tessellation and for Additive Manufacturing

ACS Biomater Sci Eng. 2018 Feb 12;4(2):719-727. doi: 10.1021/acsbiomaterials.7b00916. Epub 2018 Jan 26.

Abstract

Adjustment of the mechanical properties (apparent elastic modulus and compressive strength) in porous scaffolds is important for artificial implants and bone tissue engineering. In this study, a top-down design method based on Voronoi-Tessellation was proposed. This method was successful in obtaining the porous structures with specified and functionally graded porosity. The porous specimens were prepared by selective laser melting technology. Quasi-static compressive tests were conducted as well. The experiment results revealed that the mechanical properties were affected by both porosity and irregularity. The irregularity coefficient proposed in this study can achieve good accommodation and balance of "irregularity" and "controllability". The method proposed in this study provides an efficient approach for the bionic design and topological optimization of scaffolds.

Keywords: Voronoi-Tessellation; elastic modulus; gradient pore structure; porous scaffold; selective laser melting; stress shielding.