A novel chemosensor for the distinguishable detections of Cu2+ and Hg2+ by off-on fluorescence and ratiometric UV-visible absorption

Spectrochim Acta A Mol Biomol Spectrosc. 2021 Apr 5:250:119365. doi: 10.1016/j.saa.2020.119365. Epub 2021 Jan 5.

Abstract

A novel dual-functional chemosensor, derived from the conjugation of rhodamine B with a quinoline derivative (RHQ), was firstly synthesized with high efficiency and cost-effectiveness for the distinguishable detections of Cu2+ and Hg2+ via ring-opening and ring-forming mechanism. The chemosensor exhibits highly selective and distinguishable responses for Cu2+ and Hg2+ in CH3CN-H2O (4:1, v/v) with off-on fluorescence and ratiometric ultraviolet-visible (UV-Vis) absorption changes. Additionally, Cu2+ is identified by opening a rhodamine spirocycle with a UV-Vis absorption band, at around 560 nm and fluorescence turn-on. Interestingly, Hg2+ is discerned by opening the rhodamine spirocycle and by generating a new special cycle for the quinoline unit. Resultantly, there were two UV-Vis absorption bands at around 365 nm and 560 nm, which were accompanied by fluorescence turn-on. Moreover, the chemosensor can quantitatively detect Cu2+ and Hg2+ by off-on fluorescence and ratiometric UV-Vis absorption changes, respectively. Furthermore, the chemosensor with low cytotoxicity could be successfully administered to monitor Cu2+ and Hg2+ in living cells. This work may pay the way for the development of dual-functional chemosensor for quantificationally detecting metal ions in environmental and biological systems.

Keywords: Cytotoxicity; Fluorescent imaging; Heavy metal ions; Living cells; Naked-eyes.