Synergistic Interplay between Asymmetric Backbone Conformation, Molecular Aggregation, and Charge-Carrier Dynamics in Fused-Ring Electron Acceptor-Based Bulk Heterojunction Solar Cells

ACS Appl Mater Interfaces. 2021 Jan 20;13(2):2961-2970. doi: 10.1021/acsami.0c19700. Epub 2021 Jan 7.

Abstract

Asymmetric fused-ring electron acceptors (a-FREAs) have proved to be a promising type of electron acceptor for high-performance organic solar cells (OSCs). However, the relationship among molecular structures of a-FREAs and their nanoscale morphology, charge-carrier dynamics, and device performance remains unclear. In this contribution, two FREAs differing in conjugated backbone geometry with an asymmetric conformation (IPT-2F) or symmetric one (INPIC-2F) are selected to systematically explore the superiorities of the asymmetric conformation. Despite the frailer extinction coefficient and weaker crystallinity, IPT-2F shows stronger dipole interactions in the asymmetrical backbone, which would induce a closer lamellar packing than that of the symmetrical counterpart. Using PBDB-T as the electron donor, the IPT-2F-based OSCs achieve the best power conversion efficiency of 14.0%, which is ca. 67% improvement compared to the INPIC-2F-based ones (8.37%), resulting from a simultaneously increased short-circuited current density (Jsc) and fill factor. Systematical investigations on optoelectronic and morphological properties show that the asymmetric conformation-structured IPT-2F exhibits better miscibility with the polymer donor to induce a favorable blend ordering with small domain sizes and suitable phase separation compared to the INPIC-2F symmetric molecule. This facilitates an efficient charge generation and transport, inhibits charge-carrier recombination, and promotes valid charge extraction in IPT-2F-based devices.

Keywords: asymmetric conformation; dipole moment; fused-ring electron acceptor; molecular packing; organic solar cells.