The potential role of very high-resolution imagery to characterise lake, wetland and stream systems across the Prairie Pothole Region, United States

Int J Remote Sens. 2019 May 1;40(15):5768-5798. doi: 10.1080/01431161.2019.1582112.

Abstract

Aquatic features critical to watershed hydrology range widely in size from narrow, shallow streams to large, deep lakes. In this study we evaluated wetland, lake, and river systems across the Prairie Pothole Region to explore where pan-sharpened high-resolution (PSHR) imagery, relative to Landsat imagery, could pro-vide additional data on surface water distribution and movement, missed by Landsat. We used the monthly Global Surface Water (GSW) Landsat product as well as surface water derived from Landsat imagery using a matched filtering algorithm (MF Landsat) to help consider how including partially inundated Landsat pixels as water influenced our findings. The PSHR outputs (and MF Landsat) were able to identify ~60-90% more surface water interactions between waterbodies, relative to the GSW Landsat product. However, regardless of Landsat source, by doc-umenting many smaller (<0.2 ha), inundated wetlands, the PSHR outputs modified our interpretation of wetland size distribution across the Prairie Pothole Region.