In Vitro and in Vivo Degradation Behavior and Biocompatibility Evaluation of Microarc Oxidation-Fluoridated Hydroxyapatite-Coated Mg-Zn-Zr-Sr Alloy for Bone Application

ACS Biomater Sci Eng. 2019 Jun 10;5(6):2858-2876. doi: 10.1021/acsbiomaterials.9b00564. Epub 2019 May 29.

Abstract

Magnesium and its alloys are biodegradable materials with great potential for biomedical development; however, their high rate of degradation in biological environments limits the widespread application of these materials. In order to improve the corrosion resistance of magnesium alloy, a functional calcium phosphate coating was prepared on Mg-3Zn-0.5Zr-0.5Sr alloy by microarc oxidation (MAO) combined with chemical deposition of fluoridated hydroxyapatite (FHA). A dense calcium-phosphorus coating 6 μm thick composed of needle-shaped fluoridated hydroxyapatite formed on the surface of the MAO layer. The MAO-FHA coating exhibited good mineralization ability to induce hydroxyapatite deposition on its surface during degradation testing in simulated bodily fluids.

Keywords: FHA; biocompatibility; cytotoxicity; in vivo; magnesium; microarc oxidation.