Surface Modification by Divalent Main-Group-Elemental Ions for Improved Bone Remodeling To Instruct Implant Biofabrication

ACS Biomater Sci Eng. 2019 Jul 8;5(7):3311-3324. doi: 10.1021/acsbiomaterials.9b00270. Epub 2019 Jun 20.

Abstract

Divalent main-group-elemental ions are widely used to improve osteogenic capacity of implants biofabricated from Ti and its alloys. However, the conclusions regarding their osseointegration and immunogenicity are always inconsistent because of the multiple bone remodeling processes as well as the distinct material surface features arising from processing. Here we successfully manufactured the porous micro/nanostructured surface topography with divalent main-group-elemental ions (Mg2+, Ca2+, Sr2+, Ba2+) on substrates through hydrothermal treatment and comprehensively evaluated the complex bone remodeling processes, including osseointegration, immunogenicity, and fibrosis of substrates and implants. We found that Sr-modified implants not only upregulated the adhesion and proliferation of mesenchymal stem cells but also the differentiation of osteogenic markers compared with those modified by other divalent main-group-elemental ions (Mg2+, Ca2+, Ba2+). More importantly, the osteoclastogenesis, immunogenicity, and fibrosis of Sr-modified implants were also significantly downregulated. In vivo, evaluations of new bone formation and histological morphology at the interface of implant and host as well as the removal torque similarly indicated the improved osseointegration of Sr-modified implants as well as the absence of immunogenicity, fibrosis, or necrosis. Our results suggested that among various divalent main-group-elemental ions, Sr2+ might be a promising one for enhancing bone remodeling, which can be used to instruct functionalization of the surfaces of biofabricated Ti-based orthopedic and dental implants in the future.

Keywords: bone remodeling; divalent main-group-elemental ions; immunogenicity; implant; osseointegration; osteoclastogenesis.