Microstructure Analysis and Reconstruction of a Meniscus

Orthop Surg. 2021 Feb;13(1):306-313. doi: 10.1111/os.12899. Epub 2021 Jan 5.

Abstract

Objective: To analyze the characteristics of menicus microstructure and to reconstruct a microstructure-mimicing 3D model of the menicus.

Methods: Human and sheep meniscus were collected and prepared for this study. Hematoxylin-eosin staining (HE) and Masson staining were conducted for histological analysis of the meniscus. For submicroscopic structure analysis, the meniscus was first freeze-dried and then scanned by scanning electron microscopy (SEM). The porosity of the meniscus was determined according to SEM images. A micro-MRI was used to scan each meniscus, immersed in distilled water, and a 3D digital model was reconstructed afterwards. A three-dimensional (3D) resin model was printed out based on the digital model. Before high-resolution micro-CT scanning, each meniscus was freeze-dried. Then, micro-scale two-dimensional (2D) CT projection images were obtained. The porosity of the meniscus was calculated according to micro-CT images. With micro-CT, multiple 2D projection images were collected. A 3D digital model based on 2D CT pictures was also reconstructed. The 3D digital model was exported as STL format. A 3D resin model was printed by 3D printer based on the 3D digital model.

Results: As revealed in the HE and Masson images, a meniscus is mostly composed of collagen, with a few cells disseminated between the collagen fiber bundles at the micro-scale. The SEM image clearly shows the path of highly cross-linked collagen fibers, and massive pores exist between the fibers. According to the SEM images, the porosity of the meniscus was 34.1% (34.1% ± 0.032%) and the diameters of the collagen fibers were varied. In addition, the cross-linking pattern of the fibers was irregular. The scanning accuracy of micro-MRI was 50 μm. The micro-MRI demonstrated the outline of the meniscus, but the microstructure was obscure. The micro-CT clearly displayed microfibers in the meniscus with a voxel size of 11.4 μm. The surface layer, lamellar layer, circumferential fibers, and radial fibers could be identified. The mean porosity of the meniscus according to micro-CT images was 33.92% (33.92% ± 0.03%). Moreover, a 3D model of the microstructure based on the micro-CT images was built. The microscale fibers could be displayed in the micro-CT image and the reconstructed 3D digital model. In addition, a 3D resin model was printed out based on the 3D digital model.

Conclusion: It is extremely difficult to artificially simulate the microstructure of the meniscus because of the irregularity of the diameter and cross-linking pattern of fibers. The micro-MRI images failed to demonstrate the meniscus microstructure. Freeze-drying and micro-CT scanning are effective methods for 3D microstructure reconstruction of the meniscus, which is an important step towards mechanically functional 3D-printed meniscus grafts.

Keywords: 3D printing; Freeze-drying; Meniscus; Micro-CT; Micro-MRI.

MeSH terms

  • Animals
  • Female
  • Humans
  • Imaging, Three-Dimensional*
  • Magnetic Resonance Imaging
  • Male
  • Menisci, Tibial / diagnostic imaging*
  • Menisci, Tibial / physiology*
  • Microscopy, Electron, Scanning
  • Middle Aged
  • Printing, Three-Dimensional*
  • Sheep
  • Tomography, X-Ray Computed