Functionality of Sugars in Foods and Health

Compr Rev Food Sci Food Saf. 2016 May;15(3):433-470. doi: 10.1111/1541-4337.12194.

Abstract

Overweight and obesity are global health problems that affect more than 1.9 billion adults who are overweight, and of these 600 million are obese. In the United States, these problems affect 60% of the population. Critical to these statistics is the association with increased risk of cardiovascular disease, type 2 diabetes, and metabolic syndrome among other noncommunicable diseases. Many factors, including sugars, have been charged as potential causes. However, obesity and overweight and their attendant health problems continue to increase despite the fact that there is a decline in the consumption of sugars. Sugars vary in their types and structure. From a food science perspective, sugars present an array of attributes that extend beyond taste, flavor, color, and texture to aspects such as structure and shelf-life of foods. From a public health perspective, there is considerable controversy about the effect of sugar relative to satiety, digestion, and noncommunicable diseases. This comprehensive overview from experts in food science, nutrition and health, sensory science, and biochemistry describes the technical and functional roles of sugar in food production, provides a balanced evidence-based assessment of the literature and addresses many prevalent health issues commonly ascribed to sugar by the media, consumer groups, international scientific organizations, and policy makers. The preponderance of the evidence indicates that sugar as such does not contribute to adverse health outcomes when consumed under isocaloric conditions. The evidence generally indicates, as noted by the 2010 Dietary Guidelines Advisory Committee, that sugar, like any other caloric macronutrient, such as protein and fat, when consumed in excess leads to conditions such as obesity and related comorbidities. More recently, the 2015-2020 Dietary Guidelines for Americans recommended limiting dietary sugar to 10% of total energy in an effort to reduced the risk of these noncommunicable diseases.

Keywords: functionality; glycemic index; health effects; sugars.