Efficacy of agricultural waste derived biochar for arsenic removal: Tackling water quality in the Indo-Gangetic plain

J Environ Manage. 2021 Mar 1:281:111814. doi: 10.1016/j.jenvman.2020.111814. Epub 2021 Jan 2.

Abstract

Arsenic (As), a geogenic and extremely toxic metalloid can jeopardize terrestrial and aquatic ecosystems through environmental partitioning in natural soil-water compartment, geothermal and marine environments. Although, many researchers have investigated the decontamination potential of different mesoporous engineered bio sorbents for a suite of contaminants, still the removal efficiency of various pyrolyzed agricultural residues needs special attention. In the present study, rice straw derived biochar (RSBC) produced from slow pyrolysis process at 600 °C was used to remove As (V) from aqueous medium. Batch experiments were conducted at room temperature (25 ± 2 °C) under different initial concentrations (10, 30, 50, 100 μg L-1), adsorbent dosages (0.5-5 μg L-1), pH (4.0-10.0) and contact times (0-180 min). The adsorption equilibrium was established in 120 min. Adsorption process mainly followed pseudo-second order kinetics (R2 ≥ 0.96) and Langmuir isotherm models (R2 ≥ 0.99), and the monolayer sorption capacity of 25.6 μg g-1 for As (V) on RSBC was achieved. Among the different adsorbent dosages and initial concentrations used in the present study, 0.2 g L-1 (14.8 μg g-1) and 100 μg L-1 (13.1 μg g-1) were selected as an optimum parameters. A comparative analysis of RSBC with other pyrolyzed waste materials revealed that RSBC had comparable adsorption ability (per unit area). These acidic groups are responsible for the electron exchange (electrostatic attraction, ion-exchange, π-π/n-πinteractions) with the anionic arsenate, which facilitates optimum removal (>60%) at 7 < pH < pHPZC. The future areas of research will focus on decontamination of real wastewater samples containing mixtures of different emerging contaminants and installation of biofilter beds that contains different spent adsorbents/organic substrates (including biochar) for biopurification study in real case scenario.

Keywords: Adsorption; Arsenic; Electrostatic; Ion-exchange; Langmuir; Rice straw biochar.

MeSH terms

  • Adsorption
  • Arsenic*
  • Charcoal
  • Ecosystem
  • Hydrogen-Ion Concentration
  • Kinetics
  • Wastewater
  • Water Pollutants, Chemical*
  • Water Purification*
  • Water Quality

Substances

  • Waste Water
  • Water Pollutants, Chemical
  • biochar
  • Charcoal
  • Arsenic