Spectroscopic Determination of Key Energy Scales for the Base Hamiltonian of Chromium Trihalides

J Phys Chem Lett. 2021 Jan 14;12(1):724-731. doi: 10.1021/acs.jpclett.0c03476. Epub 2021 Jan 5.

Abstract

The van der Waals (vdW) chromium trihalides (CrX3) exhibit field-tunable, two-dimensional magnetic orders that vary with the halogen species and the number of layers. Their magnetic ground states with proximity in energies are sensitive to the degree of ligand-metal (p-d) hybridization and relevant modulations in the Cr d-orbital interactions. We use soft X-ray absorption (XAS) and resonant inelastic X-ray scattering (RIXS) spectroscopy at Cr L-edge along with the atomic multiplet simulations to determine the key energy scales such as the crystal field 10 Dq and interorbital Coulomb interactions under different ligand metal charge transfer (LMCT) in CrX3 (X= Cl, Br, and I). Through this systematic study, we show that our approach compared to the literature has yielded a set of more reliably determined parameters for establishing a base Hamiltonian for CrX3.