Transcriptional and epigenetic landscape of Ca2+-signaling genes in hepatocellular carcinoma

J Cell Commun Signal. 2021 Sep;15(3):433-445. doi: 10.1007/s12079-020-00597-w. Epub 2021 Jan 4.

Abstract

Calcium (Ca2+) signaling has a major role in regulating a wide range of cellular mechanisms, including gene expression, proliferation, metabolism, cell death, muscle contraction, among others. Recent evidence suggests that ~ 1600 genes are related to the Ca2+ signaling. Some of these genes' expression is altered in several pathological conditions, including different cancer types, and epigenetic mechanisms are involved. However, their expression and regulation in hepatocellular carcinoma (HCC) and the liver are barely known. Here, we aimed to explore the expression of genes involved in the Ca2+-signaling in HCC, liver regeneration, and hepatocyte differentiation, and whether their expression is regulated by epigenetic mechanisms such as DNA methylation and histone posttranslational modifications (HPM). Results show that several Ca2+-signaling genes' expression is altered in HCC samples; among these, a subset of twenty-two correlate with patients' survival. DNA methylation correlates with eight of these genes' expression, and Guadecitabine, a hypomethylating agent, regulates the expression of seven down-regulated and three up-regulated genes in HepG2 cells. The down-regulated genes displayed a marked decrease of euchromatin histone marks, whereas up-regulated genes displayed gain in these marks. Additionally, the expression of these genes is modulated during liver regeneration and showed similar profiles between in vitro differentiated hepatocytes and liver-derived hepatocytes. In conclusion, some components of the Ca2+-signaling are altered in HCC and displayed a correlation with patients' survival. DNA methylation and HMP are an attractive target for future investigations to regulate their expression. Ca2+-signaling could be an important regulator of cell proliferation and differentiation in the liver.

Keywords: Calcium signaling; Epigenetics; Gene expression; Hepatocellular carcinoma; Liver.