Controllable Self-Assembly of SERS Hotspots in Liquid Environment

Langmuir. 2021 Jan 19;37(2):939-948. doi: 10.1021/acs.langmuir.0c03323. Epub 2021 Jan 4.

Abstract

Controllable synthesis of novel metal nanoparticles and effective capture of hotspots are of great significance for SERS (surface-enhanced Raman spectroscopy) detection. Therefore, in this paper, a green controllable synthesis method of gold nanoparticle was achieved via epigallocatechin gallate reduction. Different morphologies of gold nanoparticles were synthesized just by changing the solution pH values, and the growth kinetics of AuNPs (gold nanoparticles) were systematically studied. The synthetic AuNPs were put in a droplet to study dynamic variations of self-assembly SERS hotspots from the liquid sol state to the solid dry state. The addition of halogen ions in the droplet can controllably regulate the self-assembly three-dimensional hotspot model of gold nanoparticles in the evaporation process of a droplet, during which the most enhancement effect can be easily captured. The dynamically changing images of nanoparticles in the process were graphically described based on the internal interaction forces of a droplet. Two stronger areas in the changes of SERS intensity were achieved with a high concentration of halogen ions, while only one maximum intensity area was obtained with a low concentration of halogen ions added. This method can effectively avoid complex and unpredictable microenvironments of SERS substrates in the liquid drop, further improving the reproducibility of SERS detection as well as broadening it to biological applications.

Publication types

  • Research Support, Non-U.S. Gov't