Ecotoxicity to Freshwater Organisms and Cytotoxicity of Nanomaterials: Are We Generating Sufficient Data for Their Risk Assessment?

Nanomaterials (Basel). 2020 Dec 30;11(1):66. doi: 10.3390/nano11010066.

Abstract

The aim of the present study was to investigate the eco-cytotoxicity of several forms of nanomaterials (NM), such as nano-CuO, nano-TiO2, nano-SiO2 and nano-ZnO, on different aquatic species (Raphidocelis subcapitata, Daphnia magna and Lemna minor) following standard protocols and on human cell lines (Caco-2, SV-80, HepG2 and HaCaT). Predicted no-effect concentrations (PNEC) or hazard concentrations for 5% of the species (HC5) were also estimated based on the compilation of data available in the literature. Most of the NM agglomerated strongly in the selected culture media. For the ecotoxicity assays, nano-CuO and nano-ZnO even in particle agglomeration state were the most toxic NM to the freshwater organisms compared to nano-TiO2 and nano-SiO2. Nano-ZnO was the most toxic NM to R. subcapitata and D. magna, while nano-CuO was found to be very toxic to L. minor. Nano-CuO was very toxic to Caco-2 and HepG2 cells, particularly at the highest tested concentrations, while the other NM showed no toxicity to the different cell lines. The HC5 and PNEC values are still highly protective, due to data limitations. However, the present study provides consistent evidence of the potential risks of both nano-CuO and nano-ZnO against aquatic organisms and also their effects on public health.

Keywords: Daphnia magna; HC5; Lemna minor; PNEC; Raphidocelis subcapitata; human cell lines; metal oxide nanomaterials; risk assessment; toxicity.