Separation of Coiled-Coil Structures in Lamin A/C Is Required for the Elongation of the Filament

Cells. 2020 Dec 31;10(1):55. doi: 10.3390/cells10010055.

Abstract

Intermediate filaments (IFs) commonly have structural elements of a central α-helical coiled-coil domain consisting of coil 1a, coil 1b, coil 2, and their flanking linkers. Recently, the crystal structure of a long lamin A/C fragment was determined and showed detailed features of a tetrameric unit. The structure further suggested a new binding mode between tetramers, designated eA22, where a parallel overlap of coil 1a and coil 2 is the critical interaction. This study investigated the biochemical effects of genetic mutations causing human diseases, focusing on the eA22 interaction. The mutant proteins exhibited either weakened or augmented interactions between coil 1a and coil 2. The ensuing biochemical results indicated that the interaction requires the separation of the coiled-coils in the N-terminal of coil 1a and the C-terminal of coil 2, coupled with the structural transition in the central α-helical rod domain. This study provides insight into the role of coil 1a as a molecular regulator in the elongation of IF proteins.

Keywords: EDMD; assembly mechanism; eA22 interaction; filament assembly; intermediate filament; laminopathies; molecular regulator; nuclear lamin A/C; structural transition.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Amino Acid Sequence
  • Cell Line, Tumor
  • Circular Dichroism
  • Fluorescent Antibody Technique
  • Gene Expression
  • Humans
  • Intermediate Filaments / chemistry
  • Intermediate Filaments / metabolism*
  • Lamin Type A / chemistry
  • Lamin Type A / genetics
  • Lamin Type A / metabolism*
  • Lamins / chemistry
  • Lamins / genetics
  • Lamins / metabolism*
  • Mutation
  • Protein Binding
  • Protein Conformation
  • Protein Conformation, alpha-Helical
  • Protein Domains
  • Protein Multimerization
  • Recombinant Proteins

Substances

  • Lamin Type A
  • Lamins
  • Recombinant Proteins
  • lamin C protein, human