A comparison of animal color measurements using a commercially available digital color sensor and photograph analysis

Curr Zool. 2020 Dec;66(6):601-606. doi: 10.1093/cz/zoaa016. Epub 2020 Mar 27.

Abstract

An animal's pelage, feather, or skin color can serve a variety of functions, so it is important to have multiple standardized methods for measuring color. One of the most common and reliable methods for measuring animal coloration is the use of standardized digital photographs of animals. New technology in the form of a commercially available handheld digital color sensor could provide an alternative to photography-based animal color measurements. To determine whether a digital color sensor could be used to measure animal coloration, we tested the ability of a digital color sensor to measure coloration of mammalian, avian, and lepidopteran museums specimens. We compared results from the sensor to measurements taken using traditional photography methods. Our study yielded significant differences between photography-based and digital color sensor measurements of brightness (light to dark) and colors along the green to red spectrum. There was no difference between photographs and the digital color sensor measurements for colors along the blue to yellow spectrum. The average difference in recorded color (ΔE) by the 2 methods was above the threshold at which humans can perceive a difference. There were significant correlations between the sensor and photographs for all measurements indicating that the sensor is an effective animal coloration measuring tool. However, the sensor's small aperture and narrow light spectrum range designed for human-vision limit its value for ecological research. We discuss the conditions in which a digital color sensor can be an effective tool for measuring animal coloration in both laboratory settings and in the field.

Keywords: Nix color sensor; animal coloration; color measurement; comparative method; digital photography; museum specimens.