Particle size distribution of aggregates effects on mesoscopic structural evolution of cemented waste rock backfill

Environ Sci Pollut Res Int. 2021 Apr;28(13):16589-16601. doi: 10.1007/s11356-020-11779-9. Epub 2021 Jan 2.

Abstract

The most economical, environmental, and friendly method for recycling gangue is filling mining with cemented waste rock backfill (CWRB), which solves the environmental problems caused by gangue discharge and reduces the mining damages. Evaluating the mesoscopic structure of CWRB is of great significance for maximizing the utilization of gangue recycling and improving the economic benefits of filling mining. This paper constructed the particle flow model of cemented waste rock backfill (CWRB) considering particle size distribution (PSD) of aggregates and hydration of cementing material to investigate the effect of the PSD of aggregates on its mesoscopic structural evolution. The strain energy, crack, force chain, and particle fragment of CWRB during the whole loading were discussed. The binary processing and calculation on the crack image were performed to analyze the fractal dimension of crack distribution by compiling program. The influencing mechanism of the PSD of aggregates on the strength of CWRB is revealed from the mesoscopic levels of crack evolution, force chain structure, and particle fragment. The results show that the strain energy increases firstly and then decreases with the PSD fractal dimension, while the crack number decreases firstly and then increases with that. The cracks with less number and more uniform distribution present the smaller fractal dimension, CWRB with a low fractal dimension of crack distribution has higher strength, the fractal dimension of crack distribution exhibits a correlation with the PSD of aggregates. CWRBs with the PSD fractal dimensions of 2.4-2.6 have the largest strain energy and the smallest crack number, performing the superior structural evolution during loading. This study presents the huge potential of optimizing PSD in CWRB application from a new perspective, it is of great significance for strengthening the internal structure of CWRB and reducing engineering cost.

Keywords: Cemented waste rock backfill; Fractal dimension; Mesoscopic structural evolution; Particle flow simulation; Particle size distribution.

MeSH terms

  • Construction Materials
  • Fractals*
  • Mining*
  • Particle Size
  • Recycling