Evaluating factors influencing infrasonic signal detection and automatic processing performance utilizing a regional network

J Acoust Soc Am. 2020 Dec;148(6):3509. doi: 10.1121/10.0002650.

Abstract

Physical and deployment factors that influence infrasound signal detection and assess automatic detection performance for a regional infrasound network of arrays in the Western U.S. are explored using signatures of ground truth (GT) explosions (yields). Despite these repeated known sources, published infrasound event bulletins contain few GT events. Arrays are primarily distributed toward the south-southeast and south-southwest at distances between 84 and 458 km of the source with one array offering azimuthal resolution toward the northeast. Events occurred throughout the spring, summer, and fall of 2012 with the majority occurring during the summer months. Depending upon the array, automatic detection, which utilizes the adaptive F-detector successfully, identifies between 14% and 80% of the GT events, whereas a subsequent analyst review increases successful detection to 24%-90%. Combined background noise quantification, atmospheric propagation analyses, and comparison of spectral amplitudes determine the mechanisms that contribute to missed detections across the network. This analysis provides an estimate of detector performance across the network, as well as a qualitative assessment of conditions that impact infrasound monitoring capabilities. The mechanisms that lead to missed detections at individual arrays contribute to network-level estimates of detection capabilities and provide a basis for deployment decisions for regional infrasound arrays in areas of interest.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.