Multiple orbital angular momentum mode switching at multi-wavelength in few-mode fibers

Opt Express. 2020 Nov 23;28(24):36084-36094. doi: 10.1364/OE.410202.

Abstract

Mode division multiplexing has attracted great attention because it can potentially overcome the limitation of single-mode fiber traffic capacity. However, it has been challenging to realize multiple modes controlling and switching due to the intrinsic overlap of the modes in the transmission waveguide. As a solution, we propose a cascaded phase-shifted long-period fiber grating (PS-LPFG) based multiple mode switching scheme. Using the PS-LPFGs, the multiple guided orbital angular momentum (OAM) modes selective controlling and switching at multi-wavelength can be achieved in few-mode fibers by regulating the grating resonance condition. In principle, a N × N mode switch matrix can be realized by cascading CN2 gratings, where each grating acts as a mode switch element to achieve a couple selected OAM mode switching and meanwhile the other modes are under nonblocking status. As a proof of the concept, a 2 × 2 mode switching between two OAM modes at different wavelengths based on one PS-LPFG element is demonstrated in our experiments. The switching efficiency of the two modes at two wavelengths 1537nm and 1558nm are ∼98.4% and ∼98.7%, respectively. The proposed multiple OAM mode switch has potential applications in the future hybrid multi-dimensional multiplexing optical fiber communication systems.