Evaluation of Surface Modified Live Biotherapeutic Products for Oral Delivery

ACS Biomater Sci Eng. 2023 Jun 12;9(6):2868-2878. doi: 10.1021/acsbiomaterials.0c01405. Epub 2020 Dec 30.

Abstract

Live biotherapeutic products (LBPs), including symbiotic and genetically engineered bacteria, are a promising class of emerging therapeutics that are widely investigated both preclinically and clinically for their oral delivery to the gastrointestinal (GI) tract. One emergent delivery strategy involves the direct functionalization of LBP surfaces through noncovalent or covalent modifications to control LBP interactions with the GI microenvironment, thereby improving their viability, attachment, or therapeutic effect. However, unlike other therapeutic modalities, LBPs are living organisms which present two unique challenges for surface modifications: (1) this approach can directly interfere with key LBP biological processes (e.g., colonization, metabolite secretion) and (2) modification can be variable due to the dynamic nature of LBP surfaces. Collectively, these factors remain uncharacterized as they relate to the oral delivery of LBPs. Herein, we leverage our previously reported surface modification platform, which enables LBP surface-presentation of targeting ligands, to broadly evaluate and characterize surface modifications on LBPs. Specifically, we evaluate how LBP growth affects the dilution of surface-presented targeting ligands and the subsequent loss of specific target attachment over time. Next, we describe key surface modification parameters (e.g., concentration, residence time) that can be optimized to facilitate LBP target attachment. We then characterize how bioconjugation influences the suitability of LBPs for oral delivery by evaluating their growth, viability, storage, toxicity against mammalian cells, and in vivo colonization. Broadly, we describe key parameters that influence the performance of surface modified LBPs and subsequently outline an experimental pipeline for characterizing and evaluating their suitability for oral delivery.

Keywords: bioconjugation; drug delivery; microbiome; probiotic; targeted delivery.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Ligands
  • Mammals*

Substances

  • Ligands