Efficient Adsorption of Dyes Using Polyethyleneimine-Modified NH2-MIL-101(Al) and its Sustainable Application as a Flame Retardant for an Epoxy Resin

ACS Omega. 2020 Dec 7;5(50):32286-32294. doi: 10.1021/acsomega.0c04118. eCollection 2020 Dec 22.

Abstract

Metal-organic frameworks (MOFs) exhibit highly designable properties and have been used in wide applications. To further improve their performance, the modification of MOFs is an effective method. However, the modification process is usually complicated. Besides, the sustainable use of MOFs is difficult to achieve due to the complicated recycling treatment. Herein, we designed a polyethyleneimine (PEI)-modified NH2-MIL-101(Al) composite (PEI@NH2-MIL-101(Al)). This composite showed excellent dye removal performance of methyl orange (MO, 89.4%) and Direct Red 80 (DR80, 99.8%). Remarkably, the dye removal application of PEI@NH2-MIL-101(Al) also acted as a modification process toward flame retardant application. Thus, the dye-adsorbed PEI@NH2-MIL-101(Al) composite (MO-PEI@NH2-MIL-101(Al) and DR80-PEI@NH2-MIL-101(Al)) was sustainably used as an effective flame retardant for an epoxy resin (EP) at low additions (4.0 wt %). The limiting oxygen values of EP/MO-PEI@NH2-MIL-101(Al) and EP/DR80-PEI@NH2-MIL-101(Al) increased to 26.5 and 26.7%, respectively. The heat release and the smoke production of dyes-PEI@NH2-MIL-101(Al)/EP were greatly reduced compared with those of EP. This strategy provides a simple and effective modification method for MOFs. Meanwhile, the modified MOF composite can achieve sustainable application, giving full play to the advantages of MOFs.