Progress of Disintegration of Polylactide (PLA)/Poly(Butylene Succinate) (PBS) Blends Containing Talc and Chalk Inorganic Fillers under Industrial Composting Conditions

Polymers (Basel). 2020 Dec 22;13(1):10. doi: 10.3390/polym13010010.

Abstract

Biodegradable plastics are experiencing increasing demand, in particular because of said property. This also applies to the two biopolyesters poly(lactic acid) (PLA) and poly(butylene succinate) (PBS) covered in this study. Both are proven to be biodegradable under industrial composting conditions. This study presents the influence of mineral fillers on the disintegration process of PLA/PBS blend systems under such conditions. Chalk and talc were used as fillers in PLA/PBS (7:3) blend systems. In addition, unfilled PLA/PBS (7:3/3:7) blend systems were considered. Microscopic images, differential scanning calorimetry and tensile test measurements were used in addition to measuring mass loss of the specimen to characterize the progress of disintegration. The mineral fillers used influence the disintegration behavior of PLA/PBS blends under industrial composting conditions. In general, talc leads to lower and chalk to higher disintegration rates. This effect is in line with the measured decrease in mechanical properties and melting enthalpies. The degrees of disintegration almost linearly correlate with specimen thickness, while different surface textures showed no clear effects. Thus, we conclude that disintegration in a PLA/PBS system proceeds as a bulk erosion process. Using fillers to control the degradation process is generally regarded as possible.

Keywords: PBS; PLA; biodegradation behavior; blend; disintegration; industrial composting conditions; inorganic filler; poly(butylene succinate); poly(lactic acid).