Drainage for forestry increases N, P and TOC export to boreal surface waters

Sci Total Environ. 2021 Mar 25:762:144098. doi: 10.1016/j.scitotenv.2020.144098. Epub 2020 Dec 16.

Abstract

More reliable assessments of nutrient export to surface waters and the Baltic Sea are required to achieve good ecological status of all water bodies. Previous nutrient export estimates have recently been questioned since they did not include the long-term impacts of drainage for forestry. We made new estimates of the total nitrogen (N), total phosphorus (P) and total organic carbon (TOC) export from forests to surface waters at different spatial scales in Finland. This was done by formulating statistical equations between streamwater concentrations and climate, soil, forest management and runoff variables and spatial data on catchment characteristics. The equations were based on a large, long-term runoff and streamwater quality dataset, which was collected from 28 pristine and 61 managed boreal forest catchments located around Finland. We found that the concentrations increased with temperature sum (TS), i.e. from north to south. Nitrogen, P and TOC concentrations increased with the proportion of drained areas in the catchment; those of N and TOC also increased with the proportion of peatlands. In contrast, with the increasing concentrations of N and TOC with time, P concentrations showed a decreasing trend over the last few decades. According to our estimates, altogether 47,300 Mg of N, 1780 Mg of P and 1814 Gg of TOC is transported from forest areas to surface waters in Finland. Forest management contributes 17% of the N export, 35% of the P export and 12% of the TOC export. Our new forest management export estimates for N and P are more than two times higher than the old estimates used by the environment authorities. The differences may be explained by the long-term impact of forest drainage. The spatial results indicate that peatland forests are hotspots for N, P and TOC export, especially in the river basins draining to the Gulf of Bothnia.

Keywords: Catchment; Fertilization; Forest management; Nutrient concentrations; Peatland; Streamwater.