Clock Genes, Inflammation and the Immune System-Implications for Diabetes, Obesity and Neurodegenerative Diseases

Int J Mol Sci. 2020 Dec 21;21(24):9743. doi: 10.3390/ijms21249743.

Abstract

Inflammation is a common feature of several diseases, including obesity, diabetes and neurodegenerative disorders. Circadian clock genes are expressed and oscillate in many cell types such as macrophages, neurons and pancreatic β cells. During inflammation, these endogenous clocks control the temporal gating of cytokine production, the antioxidant response, chemokine attraction and insulin secretion, among other processes. Deletion of clock genes in macrophages or brain-resident cells induces a higher production of inflammatory cytokines and chemokines, and this is often accompanied by an increased oxidative stress. In the context of obesity and diabetes, a high-fat diet disrupts the function of clock genes in macrophages and in pancreatic β cells, contributing to inflammation and systemic insulin resistance. Recently, it has been shown that the administration of natural and synthetic ligands or pharmacological enhancers of the circadian clock function can selectively regulate the production and release of pro-inflammatory cytokines and improve the metabolic function in vitro and in vivo. Thus, a better understanding of the circadian regulation of the immune system could have important implications for the management of metabolic and neurodegenerative diseases.

Keywords: clock genes; diabetes; inflammation; neurodegenerative diseases; obesity.

Publication types

  • Review

MeSH terms

  • Animals
  • CLOCK Proteins / genetics*
  • Circadian Clocks*
  • Diabetes Mellitus / etiology
  • Diabetes Mellitus / pathology*
  • Humans
  • Immune System / immunology*
  • Inflammation / immunology*
  • Inflammation / physiopathology
  • Neurodegenerative Diseases / etiology
  • Neurodegenerative Diseases / pathology*
  • Obesity / etiology
  • Obesity / pathology*

Substances

  • CLOCK Proteins