Acute respiratory response to individual particle exposure (PM1.0, PM2.5 and PM10) in the elderly with and without chronic respiratory diseases

Environ Pollut. 2021 Feb 15:271:116329. doi: 10.1016/j.envpol.2020.116329. Epub 2020 Dec 17.

Abstract

Limited data were on the acute respiratory responses in the elderly in response to personal exposure of particulate matter (PM). In order to evaluate the changes of airway inflammation and pulmonary functions in the elderly in response to individual exposure of particles (PM1.0, PM2.5 and PM10), we analyzed 43 elderly subjects with either asthma, chronic obstructive pulmonary disease (COPD) or Asthma COPD Overlap (ACO) and 40 age-matched subjects without asthma nor COPD in an urban community in Shanghai, China. Data were collected at the baseline and in 6 follow-ups from August 2016 to December 2018, once every 3 months except for the last twice with a 6-month interval. In each follow-up, pulmonary functions, fractional exhaled nitric oxide (FeNO), 7-day continuous personal exposure to airborne particles were measured. Multivariate linear mixed effect regression models were applied to investigate the quantitative changes of pulmonary functions and FeNO in two respective groups. The results showed that on average 4.7 follow-up visits were completed in each participant. In subjects with CRDs, an inter-quartile range (IQR) increase of personal exposure to PM1.0, PM2.5 and PM10 was significantly associated with an average increase of FeNO(Lag1) of 6.7 ppb (95%CI 1.2, 9.9 ppb), 6.2 ppb (95%CI 1.5, 12.0 ppb) and 5.6 ppb (95%CI 1.5, 11.0 ppb), respectively, and an average decrease of FEV1(Lag2) of -3.6 L (95%CI -6.0, -1.1 L), -3.6 L (95%CI -6.4, -0.8 L) and -3.2 L (95%CI -5.8, -0.6 L), respectively, in the single-pollutant model. These associations remained consistent in the two-pollutant models adjusting for gaseous air pollutants. Stratified analysis showed that subjects with lower BMI, females and non-allergies were more sensitive to particle exposure. No robust significant effects were observed in the subjects without CRDs. Our study provided data on the susceptibility of the elderly with CRDs to particle exposure of PM1.0 and PM2.5, and the modification effects by BMI, gender and history of allergies.

Keywords: Asthma; Asthma COPD Overlap; COPD; Particulate matter; Personal air pollution.

MeSH terms

  • Aged
  • Air Pollutants* / analysis
  • Air Pollution* / adverse effects
  • Air Pollution* / analysis
  • Asthma*
  • China
  • Environmental Exposure / adverse effects
  • Environmental Exposure / analysis
  • Female
  • Humans
  • Particulate Matter / analysis
  • Pulmonary Disease, Chronic Obstructive*

Substances

  • Air Pollutants
  • Particulate Matter