Diffusivity in breast malignancies analyzed for b > 1000 s/mm2 at 1 mm in-plane resolutions: Insight from Gaussian and non-Gaussian behaviors

J Magn Reson Imaging. 2021 Jun;53(6):1913-1925. doi: 10.1002/jmri.27489. Epub 2020 Dec 26.

Abstract

Diffusion-weighted imaging (DWI) can improve breast cancer characterizations, but often suffers from low image quality -particularly at informative b > 1000 s/mm2 values. The aim of this study was to evaluate multishot approaches characterizing Gaussian and non-Gaussian diffusivities in breast cancer. This was a prospective study, in which 15 subjects, including 13 patients with biopsy-confirmed breast cancers, were enrolled. DWI was acquired at 3 T using echo planar imaging (EPI) with and without zoomed excitations, readout-segmented EPI (RESOLVE), and spatiotemporal encoding (SPEN); dynamic contrast-enhanced (DCE) data were collected using three-dimensional gradient-echo T1 weighting; anatomies were evaluated with T2 -weighted two-dimensional turbo spin-echo. Congruence between malignancies delineated by DCE was assessed against high-resolution DWI scans with b-values in the 0-1800 s/mm2 range, as well as against apparent diffusion coefficient (ADC) and kurtosis maps. Data were evaluated by independent magnetic resonance scientists with 3-20 years of experience, and radiologists with 6 and 20 years of experience in breast MRI. Malignancies were assessed from ADC and kurtosis maps, using paired t tests after confirming that these values had a Gaussian distribution. Agreements between DWI and DCE datasets were also evaluated using Sorensen-Dice similarity coefficients. Cancerous and normal tissues were clearly separable by ADCs: by SPEN their average values were (1.03 ± 0.17) × 10-3 and (1.69 ± 0.19) × 10-3 mm2 /s (p < 0.0001); by RESOLVE these values were (1.16 ± 0.16) × 10-3 and (1.52 ± 0.14) × 10-3 (p = 0.00026). Kurtosis also distinguished lesions (K = 0.64 ± 0.15) from normal tissues (K = 0.45 ± 0.05), but only when measured by SPEN (p = 0.0008). The best statistical agreement with DCE-highlighted regions arose for SPEN-based DWIs recorded with b = 1800 s/mm2 (Sorensen-Dice coefficient = 0.67); DWI data recorded with b = 850 and 1200 s/mm2 , led to lower coefficients. Both ADC and kurtosis maps highlighted the breast malignancies, with ADCs providing a more significant separation. The most promising alternative for contrast-free delineations of the cancerous lesions arose from b = 1800 s/mm2 DWI. LEVEL OF EVIDENCE: 2. TECHNICAL EFFICACY STAGE: 3.

Keywords: breast cancer diagnosis; diffusion kurtosis imaging; diffusion-weighted imaging; spatiotemporal encoding.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Breast / diagnostic imaging
  • Breast Neoplasms* / diagnostic imaging
  • Diffusion Magnetic Resonance Imaging*
  • Humans
  • Normal Distribution
  • Prospective Studies