NKG2D and MICA/B shedding: a 'tag game' between NK cells and malignant cells

Clin Transl Immunology. 2020 Dec 22;9(12):e1230. doi: 10.1002/cti2.1230. eCollection 2020.

Abstract

Natural killer (NK) cells are innate lymphocytes with cytotoxic functions and recognise target cells with the NK group 2D (NKG2D) receptor. Tumor cells are marked for NK-cell-mediated destruction upon expression of MICA and MICB (MICA/B), which are NKG2D ligands upregulated by many human cancers in response to cellular stress pathways associated with malignant transformation such as DNA damage and accumulation of misfolded proteins. However, MICA/B proteins are downregulated by tumor cells via intriguing molecular mechanisms, such as post-translational modifications in which the external domains of MICA/B are proteolytically cleaved by surface proteases and shed into the extracellular space. MICA/B shedding by cancer cells causes effective escape from NKG2D recognition and allows the development of cancers. Patients frequently have increased concentrations of soluble MICA/B molecules shed in the blood plasmas and sera, thus indicating that MICA/B shedding is a therapeutic target in immune-oncology. Here, we review the clinical significance of MICA/B shedding in cancer as well as novel immunotherapeutic approaches that aim to restore NKG2D-mediated surveillance. We also briefly discuss potential roles of MICA/B shedding beyond oncology, such as in viral infections and immune tolerance. This review will help to inform the future developments of NKG2D-based immunotherapies.

Keywords: MICA and MICB; NK cells; NKG2D; cancer immunotherapy; proteolytic shedding.