Coronavirus Endoribonuclease Ensures Efficient Viral Replication and Prevents Protein Kinase R Activation

J Virol. 2021 Apr 1;95(7):e02103-20. doi: 10.1128/JVI.02103-20. Epub 2020 Dec 23.

Abstract

Coronavirus (CoV) nsp15 is an endoribonuclease conserved throughout the CoV family. The enzymatic activity and crystal structure of infectious bronchitis virus (IBV) nsp15 are undefined, and the protein's role in replication remains unclear. We verified the uridylate-specific endoribonuclease (EndoU) activity of IBV and found that the EndoU active sites were located in the C-terminus of nsp15 and included His223, His238, Lys278 and Tyr334. We further constructed an infectious clone of the IBV-rSD strain (rSD-wild-type [WT]) and EndoU-deficient IBVs by changing the codon for the EndoU catalytic residues to alanine. Both the rSD-WT and EndoU-deficient viruses propagated efficiently in embryonated chicken eggs. Conversely, EndoU-deficient viral propagation was severely impaired in chicken embryonic kidney cells, which was reflected in the lower viral mRNA accumulation and protein synthesis. After infecting chickens with the parental rSD-WT strain and EndoU-deficient viruses, the EndoU-deficient-virus-infected chickens presented reduced mortality, tissue injury and viral shedding.IMPORTANCE Coronaviruses can emerge from animal reservoirs into naive host species to cause pandemic respiratory and gastrointestinal diseases with significant mortality in humans and domestic animals. Infectious bronchitis virus (IBV), a γ-coronavirus, infects respiratory, renal and reproductive systems, causing millions of dollars in lost revenue worldwide annually. Mutating the viral endoribonuclease resulted in an attenuated virus and prevented protein kinase R activation. Therefore, EndoU activity is a virulence factor in IBV infections, thus providing an approach for generating live-attenuated vaccine candidates for emerging coronaviruses.