Design and synthesis of 14 and 15-membered macrocyclic scaffolds exhibiting inhibitory activities of hypoxia-inducible factor 1α

Bioorg Med Chem. 2021 Jan 15:30:115949. doi: 10.1016/j.bmc.2020.115949. Epub 2020 Dec 13.

Abstract

Inspired by the privileged molecular skeletons of 14- and 15-membered antibiotics, we adopted a relatively unexplored synthetic approach that exploits alkaloidal macrocyclic scaffolds to generate modulators of protein-protein interactions (PPIs). As mimetics of hot-spot residues in the α-helices responsible for the transcriptional regulation, three hydrophobic sidechains were displayed on each of the four distinct macrocyclic scaffolds generating diversity of their spatial arrangements. Modular assembly of the building blocks followed by ring-closing olefin metathesis reaction and subsequent hydrogenation allowed concise and divergent synthesis of scaffolds 1-4. The 14-membered alkaloidal macrocycles 2-4 demonstrated similar inhibition of hypoxia-inducible factor (HIF)-1α transcriptional activities (IC50 between 8.7 and 10 µM), and 4 demonstrated the most potent inhibition of cell proliferation in vitro (IC50 = 12 µM against HTC116 colon cancer cell line). A docking model suggested that 4 could mimic the LLxxL motif in HIF-1α, in which the three sidechains are capable of matching the spatial arrangements of the protein hot-spot residues. Unlike most of the stapled peptides, the 14-membered alkaloidal scaffold has a similar size to the α-helix backbone and does not require additional atoms to induce α-helix mimetic structure. These experimental results underscore the potential of alkaloidal macrocyclic scaffolds featuring flexibly customizable skeletal, stereochemical, substitutional, and conformational properties for the development of non-peptidyl PPI modulators targeting α-helix-forming consensus sequences responsible for the transcriptional regulation.

Keywords: Alkaloidal macrocyclic scaffold; Hypoxia-inducible factor (HIF)-1α; PPI modulators; Protein-protein interactions (PPIs); α-Helix mimetics.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Alkaloids / chemical synthesis
  • Alkaloids / chemistry
  • Alkaloids / pharmacology*
  • Antineoplastic Agents / chemical synthesis
  • Antineoplastic Agents / chemistry
  • Antineoplastic Agents / pharmacology*
  • Cell Proliferation / drug effects
  • Cell Survival / drug effects
  • Dose-Response Relationship, Drug
  • Drug Design*
  • Drug Screening Assays, Antitumor
  • Humans
  • Hypoxia-Inducible Factor 1, alpha Subunit / antagonists & inhibitors*
  • Hypoxia-Inducible Factor 1, alpha Subunit / metabolism
  • Macrocyclic Compounds / chemical synthesis
  • Macrocyclic Compounds / chemistry
  • Macrocyclic Compounds / pharmacology*
  • Models, Molecular
  • Molecular Structure
  • Structure-Activity Relationship
  • Tumor Cells, Cultured

Substances

  • Alkaloids
  • Antineoplastic Agents
  • HIF1A protein, human
  • Hypoxia-Inducible Factor 1, alpha Subunit
  • Macrocyclic Compounds