Status of insecticide resistance and biochemical characterization of chlorpyrifos resistance in Sogatella furcifera (Hemiptera:Delphacidae) in Sichuan Province, China

Pestic Biochem Physiol. 2021 Jan:171:104723. doi: 10.1016/j.pestbp.2020.104723. Epub 2020 Oct 14.

Abstract

The white-backed planthopper, Sogatella furcifera (Horváth) (Hemiptera, Delphacidae), is an energetic rice insect pest in rice production or rice-growing areas. Due to excessive use of the chemical insecticide, S. furcifera has produced the high resistance to some frequently used insecticides. In this paper, the resistance levels of S. furcifera from the eight different areas of Sichuan Province against the five chemicals were monitored by using the rice seedling dipping during 2017-2018 to understand the resistance levels. The results showed that most of all populations have developed low or moderate level of resistance for chlorpyrifos (3.4 to 44.3-fold) and thiamethoxam (3.9- to 15.5-fold), the populations in the LS (1.7 to 5.4- fold)and WS (1.6 to 5.0- fold) regions were still sensitive or low resistance levels compared with other local populations. Almost all populations displayed the susceptible to imidacloprid (0.9- to 5.0-fold), buprofezin (0.9- to 4.3-fold) or low levels of resistance to pymetrozine (1.5- to 6.8-fold). The synergism experiment indicated that P450 enzymes may be important contributed to the metabolic detoxification of chlorpyrifos. The cross-resistance bioassay showed that there was no cross-resistance between chlorpyrifos and triflumezopyrim, but for sulfoxaflor, in the XY17 population. The relative expression level of twelve insecticide resistant-related P450 genes were analyzed by using qRT-PCR and found that CYP4C77, CYP418A1, CYP418A2, CYP408A3 and CYP6ER4 were significantly more expressed in the 3rd-instar nymph of the XY17 and XY18 field populations. To determine the main resistant-related P450 gene for chlorpyrifos, the relative expression level of five P450 genes were detected by using qRT-PCR from the G2 and G4 generation of XY17 under the pressure with LC50 of chlorpyrifos. The results showed that CYP6ER4 was significantly up-regulated expression in XY17 G2 and G4 generations population over 700-fold (P < 0.01). The full length and proteins tertiary structure were also cloned and predicted. Meanwhile, the function of CYP6ER4 was analyzed by RNA interference and the results indicated that the relative expression of CYP6ER4 in the XY17 (G4) population after injected dsRNA was lower than that in the dsGFP injected group. Moreover, the mortality rates of the S. furcifera treated with the LC50 concentration of chlorpyrifos after dsRNA microinjection was significantly higher than that of the dsGFP injected group 72 h after treatment (P < 0.01). Therefore, the overexpression of CYP6ER4 may be one of the primary factors in the development of chlorpyrifos resistance in S. furcifera.

Keywords: Chlorpyrifos; Cytochrome P450; Insecticide resistance; RNA interference; Sogatella furcifera.

MeSH terms

  • Animals
  • China
  • Chlorpyrifos* / toxicity
  • Hemiptera* / genetics
  • Insecticide Resistance / genetics
  • Insecticides* / toxicity

Substances

  • Insecticides
  • Chlorpyrifos