Investigation of Dendrimer Transfer Behaviors at the Micro-Water/1,2-Dichloroethane Interface Facilitated by Dibenzo-18-Crown-6

Anal Chem. 2021 Jan 26;93(3):1515-1522. doi: 10.1021/acs.analchem.0c03815. Epub 2020 Dec 24.

Abstract

Trans-interfacial behaviors of multiple ionic species at the interface between two immiscible electrolyte solutions (ITIES) are of importance to biomembrane mimicking, chemical and biosensing, and interfacial molecular catalysis. Utilizing host-guest interaction to facilitate ion transfer is an effective and commonly used method to decrease the Gibbs energy of transfer of a target molecule. Herein, we investigated a facilitated ion transfer (FIT) process of poly(amidoamine)dendrimer (PAMAM, G0-G2) by dibenzo-18-crown-6 (DB18C6) at the microinterfaces between water and 1,2-dichloroethane (μ-W/DCE). Because of the host-guest interaction between a dendrimer and a ligand, negative shifts of the transfer potentials were observed using cyclic voltammetry or Osteryoung square wave voltammetry. From the FIT behavior of the dendrimer, we revealed that each DB18C6 could selectively coordinate with one amino group. We first evaluated the protonated status of the intermediate state (1:2) exactly under the conditions the dendrimer (G1) transfers across the interface using the electrochemical mass spectrometry (EC-MS)-hyphenated technique, which is much smaller than the protonated status in the water phase (1:8 to 14). Using the same methodology, we also studied the facilitated transfer behaviors of G0 and G2. Based on these results, we put forward the mechanism of the FIT process, which might involve a deprotonating process at the interface for higher-generation dendrimers.

Publication types

  • Research Support, Non-U.S. Gov't