Morphology Control of Luminescent Carbon Nanomaterials: From Dots to Rolls and Belts

ACS Nano. 2021 Jan 26;15(1):1579-1586. doi: 10.1021/acsnano.0c09053. Epub 2020 Dec 24.

Abstract

In this work, we report a successful extension of the family of light-emitting colloidal carbon nanostructures to a number of different shapes and morphologies, namely, carbon nanorolls (CNRs) and carbon nanobelts (CNBs). Near infrared (NIR)-emissive CNRs were synthesized via a solvothermal fusion of carbon dots (CDs) triggered by a dehydration process of their surface functional groups. They appear in a form of short cylinders, with diameters ranging from 20 to 40 nm and cylinder lengths ranging from 7 to 20 nm. In ethanol solution, CNRs have a maximum absorption peak at 665 nm and a NIR emission band extending from 650 to 800 nm, with a photoluminescence quantum yield of 9.2%. Intriguingly, the rolled structure of CNRs can be uncoiled under 655 nm laser irradiation (power density 1 W·cm-2) of their solution in ethanol, forming CNBs with a width of 7-20 nm and lengths reaching several hundreds of nanometers, which is accompanied by a considerably decreased absorption band at 665 nm and a decreased NIR emission. This unfolding is ascribed to the decrease of the strength of interlayer hydrogen bonding, owing to the photothermally induced dehydration and further carbonization of the CNRs. Alongside the decreased NIR emission, CNBs exhibit enhanced green and red emissions under UV and green light excitation, respectively, which allows us to demonstrate multiple-level luminescence encryptions on a paper stamped with CNR- and CNB-inks.

Keywords: carbon dots; carbon nanobelts; carbon nanorolls; luminescence encryption; morphology control; near-infrared emission; photothermal conversion.